Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, 8 May 2016

Persistence of transverse intersections

In Example 1.4.9 we discuss the persistence of transverse intersections as an application of the Impicit Function Theorem. Someone asked me about this in the second revision class. I will try to elucidate the final conclusion in this example from the notes.

"Persistence" of the isolated intersection of two curves in R2 in this example, means that if we "perturb" the curves slightly, then there remains to be a unique isolated intersection of these two curves near the original isolated intersection.

We represent the two curves by differentiable functions that parametrize these curves: f,g:RR2. We assume the intersection to be at f(0)=g(0). We now consider a parametrized family of functions fλ,gλ:RR2, representing "perturbations of the original curves", where λ serves as the "small parameter" so that f0=f and g0=g. We furthermore assume that the perturbations are such that  the derivatives Dfλ(0) and Dgλ(0) are continuous in λ near λ=0.

In the example it is proposed to consider the function hλ(s,t):R2R2 defined as hλ(s,t):=fλ(s)gλ(t). By construction h0(0,0)=(0,0) and indeed the intersection points of the curves represented by fλ andgλ are given by h1λ(0,0).

It follows that Dhλ(s,t)=(Dfλ(s),Dgλ(s)), as in the notes. This two-by-two matrix is non-singular (ie has no zero eigenvalue, or - equivalently - is invertible) if and only if the two-dimensional vectors Dfλ(s) and Dgλ(t) are not parallel (ie not real multiples of each other).

We now use this to analyze the intersection at λ=0: when Df0(0) and Dg0(0) (which are the tangent vectors to the respective curves at the intersection point) are not parallel, then Dh0(0,0) is invertible and the intersection of the two curves at f0(0)=g0(0) is isolated (there is a neighbourhood of this point, where there is no other intersection).

Considering a small variation of λ, we note that by application of the Implicit Function Theorem to h0,  for sufficiently small λ there exist continuous functions s(λ) and t(λ) so that (s(λ),t(λ)) is the element of h1λ(0,0) near (0,0)=(s(0),t(0)). This unique "continuation" of the original solution 0,0 is of course also isolated since if Dh0(0,0) is invertible then so is Dhλ(s(λ),t(λ)) by continuity of all the dependences; so the vectors Dfλ(s(λ)) and Dgλ(t(λ)) will not be parallel for sufficiently small λ.

1 comment:

  1. Thanks for sharing such an informative post. It will be quite helpful for the students to know and understand fractions of this type.

    ReplyDelete